LIGAND SUBSTITUENT EFFECTS ON THE RELATIVE STABILITIES OF π -ALLYLIC AND σ -ALLYLIC COMPLEXES OF PALLADIUM(II)

J. POWELL AND A. W.-L. CHAN

Lash Miller Chemical Laboratories, University of Toronto, Toronto 181, Ontario (Canada) (Received July 26th, 1971)

SUMMARY

The reaction of dimethylphenylphosphine with the π -allylic palladium(II) complexes $[(\pi-All)Pd(X-Y)]$. [All=allyl, 2-methylallyl, 1,1-dimethylallyl; X-Y =S₂COMe (xanthate), S₂CNMe₂ (carbamate), O₂CC₅H₄N (picolinate), OC₉H₆N (oxinate) and Acac] has been investigated. Conductivity and low temperature PMR studies indicate initial formation of a non-conducting 1/1 adduct of the type [(All)Pd- $(X-Y)Me_2PhP$. For X-Y = S₂COMe the allylic ligand is π -bonded in the 1/1 adduct whilst the xanthate acts as a monodentate ligand. For $X-Y=O_2CC_5H_4N$ the picolinate ligand acts as a monodentate ligand in the π -2-methylallyl 1/1 adduct but in the allyl and 1,1-dimethylallyl analogues the allylic ligand is σ -bonded and the picolinate is chelated to the palladium. Addition of Me₂PhP to $(\pi$ -2-methylallyl)palladium N,N-dimethylcarbamate gives the σ -allylic species [(CH₂=C(Me)-CH₂)Pd-(S₂CNMe₂)Me₂PhP]. Variable temperature PMR studies have indicated that the chelating potential of the anionic ligand X-Y and the nature and position of allylic ligand substituents are important factors in determining the stability of σ -allylic palladium(II) complexes relative to their π -allylic analogues. Addition of two dimethylphenylphosphines to $\lceil (\pi - All)Pd(X - Y) \rceil$ gives the ionic species $\lceil (\pi - All)Pd - Y \rceil$ $(Me, PhP),]^{+}[X-Y]^{-}.$

INTRODUCTION

Extensive, variable temperature PMR studies of the ligand induced dynamic stereochemistry of dimeric π -allylic palladium chlorides and π -allylic palladium acetates have been reported¹⁻⁷. Addition of ligand L to such systems gives the monomeric species [(π -All)PdXL] [L=Me₂PhP, Ph₃P, Ph₃As, Ph(Me)CHNH₂, pyridine; X=Cl, OAc; π -All= allylic ligand] which exhibit various temperature dependent allylic PMR behaviour depending on the nature of L and X and the L/Pd ratio. Recent results have indicated the participation of σ -allylic species as intermediates in ligand promoted *syn-anti* proton exchange processes¹⁻⁷. No such studies on the ligand induced dynamic stereochemistry of monomeric π -allylic palladium(II) complexes containing anionic chelate ligands have been previously reported. Since studies of the reactions of π -allylic palladium(II) complexes containing anionic chelate ligands with unsaturated hydrocarbons suggest that such complexes may be useful for

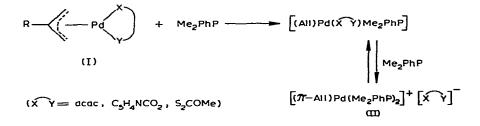
a variety of organic syntheses and as model systems for catalytic reactions⁸⁻¹⁰. we have undertaken studies of the effect of a variety of ligands on several such complexes. In this paper we report conductivity and variable temperature PMR studies of the effect of added dimethylphenylphosphine on π -allylic palladium(II) complexes of the type $\lceil (\pi-All)Pd(X-Y) \rceil \lceil (I), X-Y=N,N-dimethylcarbamate (S_2CNMe_2),$ methylxanthate (S₂COMe), oxinate (C₉H₆NO), 2-picolinate (O₂CC₅H₄N), and acetylacetonate]. Dimethylphenylphosphine was chosen because of the added structural information that may be obtained from the phosphine-methyl proton spectra^{3,11}. Xanthate and carbamate ligands were chosen as examples of symmetrical anionic chelate ligands as previous studies have suggested (though by no means proved) that addition of methyldiphenylphosphine to Pt^{II} and Pd^{II} carbamates and xanthates gives five co-ordinate species in solution¹². Since five co-ordinate π -allylic palladium(II) species have been postulated by Vrieze et al^2 as intermediates in which a postulated "inplane rotation of the π -allyl ligand may occur", it was of interest to see whether or not five co-ordinate π -allylic complexes could be isolated. The oxinate and picolinate ligands are examples of asymmetric chelates and as such the sites of the terminal π -allylic carbon atoms in these complexes are non-equivalent¹³.

RESULTS AND DISCUSSION

Preparation of complexes

 π -Allylic palladium xanthate and N,N-dimethylcarbamate complexes were isolated, in moderate yields, as orange or golden yellow crystals, by reaction of the corresponding chloride complex with the appropriate potassium xanthate or carbamate salt:

$$\frac{1}{2} [\pi - C_3 H_5 PdCl]_2 + S = C(SK)Y \rightarrow [\pi - C_3 H_5 Pd(S_2 CY)] + KC1$$
(Y = OMe, OEt, NMe₂)


Osmometric molecular weight studies in CHCl₃ at 37° confirmed that the complexes are monomeric and their PMR spectra are consistent with a symmetrical, π -allylic structure. The preparations of the other π -allylic palladium chelate complexes used in this study have been previously reported^{13,14}.

Conductivity Studies

When tertiary phosphines are added to solutions of π -allylic palladium chloride dimers in acetone, ionic species may be formed¹⁵:

$$\frac{1}{2} [(\pi - \text{All}) \text{PdCl}]_2 + \text{PR}_3 \rightarrow [(\pi - \text{All}) \text{PdClPR}_3] \xrightarrow{\text{PR}_3} \rightarrow [(\pi - \text{All}) \text{Pd}(\text{PR}_3)_2]^+ \text{Cl}^-$$

We have now obtained evidence for the formation of similar ionic species from conductiometric studies at 24° on the effect of added increments of Me₂PhP to 0.0011 *M* acetone solutions of several π -allylic palladium chelate complexes (see Fig. 1). For π -allylic palladium acetylacetonates, picolinates, xanthates, and acetate dimers (0.0006 *M* solution) the results are consistent with initial formation of a non-conducting 1/1 adduct at Me₂PhP/Pd ratios ≤ 1 and formation of ionic species at Me₂PhP/Pd ratios > 1:

The shape of the conductivity curves for Me_2PhP addition to the acetylacetonates and picolinates indicated a distinct difference in the behaviour of the analogous π -allyl and π -2-methylallyl complexes. In these systems a non-conducting 1/1 adduct is formed between Me_2PhP and the π -allyl complexes which, at Me_2PhP/Pd ratios > 1 give the ionic species (II) (see Fig. 1c and 1g). The π -2-methylallyl complexes showed a marked tendency to form ionic species even at Me_2PhP/Pd ratios < 1 (see Fig. 1b and

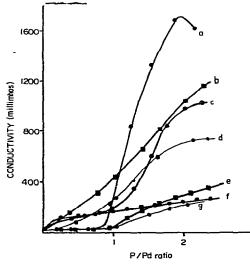


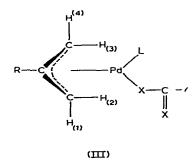
Fig. 1. Plot of conductivity measured at 24° vs. number of molecules of Me₂PhP per Pd atom when Me₂PhP is added in increasing amounts to 0.0011 M acetone solutions of (a) (2-methyllallyl)palladium acetate (0.0006 M); (b) (2-methylallyl)palladium picolinate; (c) allylpalladium picolinate; (d) (2-methylallyl)palladium picolinate; (e) (2-methylallyl)palladium methylxanthate; (f) (2-methylallyl)palladium N,N-dimethylcarbamate; (g) allylpalladium acetylacetonate.

1d). However, the formation of a small amount of a 1/1 adduct may be inferred from the inflexion point in the conductivity plot at a Me₂PhP/Pd ratio of ca. 1. (π -1,1-Dimethylallyl)palladium picolinate exhibited a similar conductivity plot to the π -allyl complex indicating formation of a 1/1 adduct. Previous studies have shown that *anti* terminal methyl groups on the allylic ligand decreases the tendency to form ionic species such as (II)¹⁵. For the allylic acetylacetonato and 1,1-dimethylallyl picolinato systems at Me₂PhP/Pd ratios > 1 the conductivity plots are only approximate owing to the instability of the ionic species formed. This instability probably reflects reduc-

2	X2CY	ы	11	t2	t ₃	t4	$\tau_{\rm R}$	J _{P-1}	Jp-2	$\tau(Me_2P) J_{P-H}$	Jp-11	Other data
H	S ₂ COMe	Mc ₂ PhP	5.32q	~ 5.9"	1	7.10d,b	4.26	4.5	6~	8.19d	10	4
СH	S ₂ COMe	Me2PhP	5.52d	6.60d	6,95b	6.95b	8.11	ŝ	6	8.20d	10	J
CH ₃	0,CC,H4N	Mc_PhP	5.86d	6.32d		7.18	7.98	9	6	8.39d	10	q
CH3	02CC5H4N	Ph3P	5.86d	6.36d	7.00	7.00	7.94	6	01			ę
[(π-1,1-I 8.53d; J	$(\pi - 1, 1 - Dimethylallyl)Pd(OAc)Me_2PhP]$ (recorded at 60 MHz), allylic protons: τ (central-H ³) = 4.80; τ_3 = 5.74b,d; τ_4 = 7.07b,d; τ (syn-Me) = 8.24d; τ (anti-Me) = 3.53d; $J_5 - 3 = 12$; $J_5 - 4 = 6$; $J_P - syn-Me = 9$; $J_{P - anti-Me} = 5$ Hz. Other protons: τ (OAc) = 7.95; τ (Me ₂ P) = 8.30; $J_{P - Me} = 10$ Hz.)Ac)Mc ₂ PhP] (r ; J _{P - syn-Mo} = 9; J _f	ecorded at 6 → anti-Me = 5 F	0 MHz), ally Iz. Other pre	lic protons otons: r(O/	: r(central-H Ac) = 7.95; r(¹⁵) = 4.80; ¹ (Mc ₂ P) = 8	: ₃ = 5.74b,d 30; <i>J</i> _{P-Me} =	;	d; τ(syn-Me) =	:8.24d; τ (a	ati-Mc)=
" Reson	^a Resonance due to proton 2 obscured by overlap with OMe proton resonance. ^b $J_{R-1} = 6$, $J_{R-2} \approx 12$ (see also footnote ^a), $J_{R-3,4} \approx 6$ Hz; $\tau(OMe) = 5.90$. ^c $\tau(OMe)$	2 obscured by c	verlap with (OMe proton	resonance.	$^{b} J_{R-1} = 6, J$	$k_{-2}\approx 12$ (s)	ce also foot	note ^a), J _R - 3	,₄≈6 Hz; τ(O	Mc) = 5.90.	1,

100 MHz PMR DATA FOR THE COMPLEXES [(π -2-RC₃H₄)Pd(X₂CY)(L)], (III)

TABLE 1


tion to palladium(0) species. The addition of excess Ph_3P to acetone solutions of these complexes results in the ready formation of $(Ph_3P)_4Pd$.

The π -allylic palladium xanthate complexes gave low and constant conductivities at Me₂PhP/Pd ratios ≤ 1 and then increased slowly on further addition of Me₂PhP (*e.g.* see Fig. 1e). However, the conductivities remained relatively low even at a Me₂PhP/Pd ratio of 3 indicating a low tendency for salt formation in these xanthate complexes. The formation of a 1/1 adduct was confirmed by molecular weight studies of [(2-methylallyl)Pd(S₂COMe)] + Me₂PhP in the ratio 1/1 at 37° in CHCl₃. The experimentally observed molecular weight is approximately the sum of the molecular weights of the two species.

The π -allylic palladium carbamates and oxinates have low conductivities in acetone which increase slowly with increasing amounts of added Me₂PhP. The addition of Ph₃P to acetone solutions of these π -allylic palladium chelate complexes gave non-conducting or only slightly conducting solutions.

¹H NMR studies

Low temperature PMR studies have proven particularly useful for elucidating the structure and dynamic stereochemistry of the Me₂PhP-complex 1/1 adducts^{*}. The low temperature PMR spectra of (π -2-methylallyl)palladium xanthate in CDCl₃ in the presence of one Me₂PhP molecule per Pd atom are shown in Fig. 2 and are very similar to the previously reported PMR spectra of [(2-methylallyl)PdXPR₃] (X=Cl, OAc; PR₃=PPh₃, Me₂PhP)^{1,2,5,6}. Thus the major solution species in this methylxanthate system at low temperatures is the square planar asymmetric, π -2-methylallyl species (III) (L=Me₂PhP; R=CH₃; X₂CY=S₂COMe). Assignment of

allylic protons in (III)⁴given in Table 1 is based on identical arguments previously used to assign the allylic PMR spectra of the related acetato and chloro complexes^{1.6}. Particularly diagnostic is the magnitude of the *trans* ³¹P nucleus coupling with protons 1 and 2 of 5 and 9 Hz, respectively. The resonances assigned to protons 3 and 4 of the xanthate complex are observed at -80° in CH₂Cl₂ as two broad singlets**. On

• • •

^{*} In all the studies reported here, coordination of dimethylphenylphosphine to the palladium is confirmed by the magnitude of the ³¹P-methyl coupling constant¹¹. Phosphine methyl groups in the π -allylic complexes (III) in the absence of exchange are non-equivalent^{3,6}.

^{**} We have not, as yet, been able to observe the PMR spectrum of $\{(\pi-2-\text{methylally})\text{Pd}[S-C(=S)OMe]-Me_2PhP\}$ below -80° because of solubility problems and as such have not been able to completely resolve the resonances of protons 3 and 4 as exchange of these protons in still occurring at -80° .

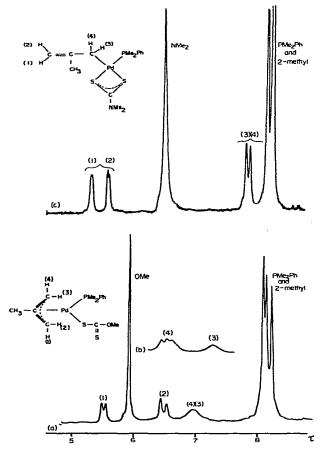
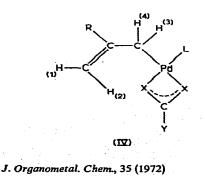



Fig. 2. PMR spectra of (a) [(2-methylallyl)Pd(S₂COMe)Me₂PhP] in CDCl₃ at -60° ; (b) in CH₂Cl₂/CDCl₃ (30% by volume) at -80° ; (c) [(σ -2-methylallyl)Pd(S₂CNMe₂)Me₂PhP] in CDCl₃ at -60° .

warming, the resonances due to protons 3 and 4 coalesce to a single peak at -60° . The rapid interchange of protons 3 and 4 is independent of concentration. Since resonances due to protons 1 and 2 remain sharp and coupled to the ³¹P nucleus, the 3-4 exchange process is clearly intramolecular. Rapid 3-4 exchange is readly explained in terms of a $\pi \rightarrow \sigma \rightarrow \pi$ process involving a σ -allylic species such as (IV)^{5,6}. Owing to

the much stronger *trans*-bond weakening effect of the Me₂PhP ligand relative to that of the xanthate ligand, the formation of the σ -allylic intermediate (IV) involves the breaking of the π -allyl-palladium bond in *trans*-position to Me₂PhP^{1,16}. The σ -allylic species (IV) may reform a π -allylic species in one of two ways resulting in 3-4 exchange^{5,6}. Recently both van Leeuwen and Praat⁵, and ourselves⁶ have shown that the observed PMR equivalence at room temperature of *syn* proton 4 and *anti* proton 3 in complexes such as (III) (L=PPh₃⁶, PMe₂Ph⁶; R=CH₃; X₂CY=O₂CCH₃) likewise occurs via the intermediacy of a σ -allylic species such as (IV). The variable tem-

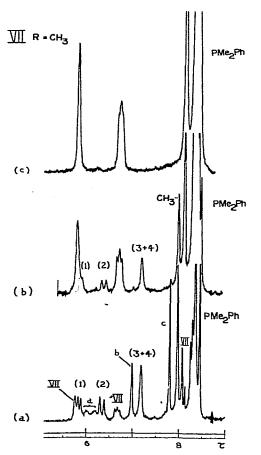


Fig. 3. The effect of increasing amounts of Me_2PhP on the 100 MHz PMR spectrum of a CDCl₃ solution of $[(\pi-2-methylallyl)Pd(O_2CC_5H_4N)]$ recorded at -50° .(a) At a Me_2PhP/Pd ratio of one resonance patterns assignable to $[(\pi-2-methylallyl)Pd(Me_2PhP)_2]^+[O_2CC_5H_4N]^-$ (VII), $[(\pi-2-methylallyl)Pd(O_2CC_5H_4N)-Me_2PhP]$ (V) (see scheme) and starting material* (resonances a, b and c) are observed. (b) At a Me_2PhP/Pd ratio of 1.6 resonance patterns assignable to (V) and (VII) are observed. (Resonances of (V) are numbered.) (c) At a Me_2PhP/Pd ratio of 2 the resonance pattern is assignable to (VII).

^{*} A rapid exchange of the non-identical syn-protons (a) with simultaneous exchange of the non-identical anti-prtons (b) is observed for $[(\pi-2-\text{methylallyl})Pd(O_2CC_5H_4N)]$ in the presence of (V) and (VII) which is not observed at -50° for $[(\pi-2-\text{methylallyl})Pd(O_2CC_5H_4N)]$ alone¹³. This may well be due to rapid exchange of the coordinated $(O_2CC_5H_4N)$ ligand with the $[O_2CC_5H_4N]^-$ anion of (VII)¹³.

perature PMR spectra of $[(\pi-allyl)Pd(S_2COMe)]$ in CDCl₃ in the presence of one Me₂PhP per Pd atom can likewise be interpreted in terms of formation of $[(\pi-allyl)Pd-{S-C(=S)OMe}Me_2PhP]$ [*i.e.* (III); R=H; X₂CY=S₂COMe see Table 1] in which rapid intramolecular exchange of protons 3 and 4 via an intermediate such as (IV) is occurring, even at -80° .

The low temperature allylic PMR of $(\pi$ -2-methylallyl)palladium picolinate in CDCl₃ in the presence of one Me₂PhP per Pd atom is shown in Fig. 3 and is consistent with the presence in solution of $[(\pi$ -2-methylallyl)Pd(O₂CC₅H₄N)], $[(\pi$ -2-methylallyl)Pd(O₂CC₅H₄N)Me₂PhP] (V) and $[(\pi$ -2-methylallyl)Pd(PhMe₂P)₂]⁺ [O₂CC₅-H₄N]⁻. On addition of a further mol. of Me₂PhP/Pd the low temperature allylic PMR spectrum (Fig. 3) is very similar to those previously reported for $[(\pi$ -2-methylallyl)Pd(Me₂PhP)₂][BPh₄]¹⁵ and $[(\pi$ -2-methylallyl)Pd(Ph₂PCH₂CH₂PPh₂)]-[PF₆]⁴ indicating that the solution species is the ionic complex $[(\pi$ -2-methylallyl)Pd(Me₂PhP)₂]⁺ [O₂CC₅H₄N]⁻. The allylic PMR pattern for the 1/1 adduct (see Fig. 3 and Table 1) exhibits *trans* ³¹P coupling with protons 1 and 2 of 6 and 9 Hz,

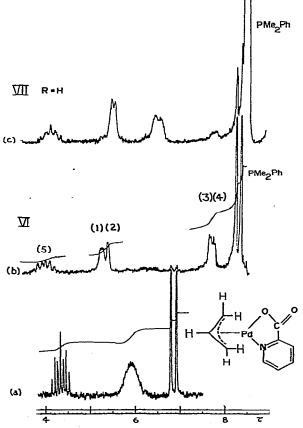


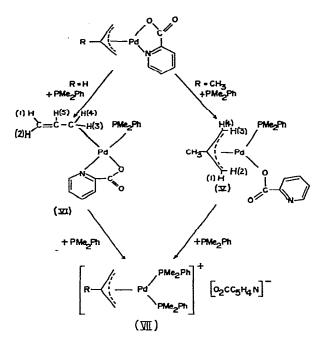
Fig. 4. The PMR spectrum of $[(\pi-\text{allyl})\text{Pd}(O_2\text{CC}_5\text{H}_4\text{N})]$ (a) in CDCl₃ at 27°. (See ref. 13 for a discussion of syn-syn and anti-anti proton exchange in this complex). (b) at -40° after addition of one Me₂PhP/Pd. *i.e.* (VI), see Scheme 1. (c) at -40° after addition of two Me₂PhP/Pd. *i.e.* (VII).

respectively consistent with the π -2-methylallyl structure (V). However, rapid exchange of protons 3 and 4 presumably via an intermediate similar to (IV) is still observed at -60°. The PMR spectrum of [(π -2-methylallyl)Pd(O₂CC₅H₄N)] in the presence of one Ph₃P/Pd in CDCl₃ at -60° (see Table 1) is consistent with sole formation of [π -(2-methylallyl)Pd(O₂CC₅H₄N)Ph₃P] similar to (V), no ionic species being observed. These results are consistent with the observed conductivity plots in acetone solution and the relative basisities of Me₂PhP and Ph₃P.

Below -20° the PMR spectrum of $[(\pi-allyl)Pd(O_2CC_5H_4N)]$ in CDCl₃ in the presence of one Me₂PhP per Pd atom, shown in Fig. 4, is markedly different from that of the 2-methylallyl system. The allyl protons give rise to an ABMX₂ pattern which may be assigned to the σ -allylic complex $[(CH_2=CH-CH_2)Pd(O_2-CC_5H_4N)Me_2PhP]$ (VI). Protons 1 and 2 give rise to a complex pattern centred at τ 5.40 typical of vinylic protons with no sign of the large ³¹P coupling which is observed in π -allylic complexes of type (III). Protons 3 and 4 are equivalent and give rise to a 1/1/1/1 quartet at τ 7.66 due to coupling with proton 5 and the *cis* ³¹P nucleus ($J_{5-3,4}=$ 9; $J_{cis-P-3,4}=4$ Hz*; peak separations, recorded at 60 MHz and 100 MHz, independent of field strength). Proton 5 gives rise to a multiplet resonance at τ 4.14.

The PMR spectrum at -50° of $[(1,1-dimethylallyl)Pd(O_2CC_5H_4N)]$ in CDCl₃ in the presence of one Me₂PhP per Pd atom is also consistent with the formation of a σ -allylic complex $[(Me_2C=CHCH_2)Pd(O_2CC_5H_4N)Me_2PhP]$. The methylene protons give rise to a broad, poorly resolved, resonance centred at τ 7.68 and the central olefinic proton gives a broad 1/2/1 triplet at τ 4.66. More diagnostic is the fact that no ³¹P coupling with the methyl proton resonances at τ 8.58 and 8.85 of the 1,1-dimethylallyl ligand is observed. The PMR spectra of CDCl₃ solutions of the complex [π -(1,1-dimethylallyl)PdOAcMe₂PhP], which was studied for comparative purposes, indicated rapid exchange of the *syn* and *anti* protons (*i.e.* 3–4 exchange) without loss of the *trans* ³¹P coupling of 9 and 5 Hz to the *syn* and *anti* methyl protons at -25° 1.6. (See Table 1 for low temperature PMR data).

On addition of a further mol. of Me₂PhP per Pd to CHCl₃ solutions of (VI) at -40° the allylic PMR spectrum corresponds to formation of the symmetrical π -allylic cationic species $[(\pi$ -allyl)Pd(Me₂PhP)₂]⁺ $[O_2CC_5H_4N]^-$ (see Scheme 1).


The low temperature PMR spectrum of the (2-methylallyl)palladium N,Ndimethylcarbamate/PMe₂Ph system in CDCl₃ at a P/Pd ratio of one is shown in the Fig. 2c and is consistent with the formation of a (σ -2-methylallyl)palladium complex [(CH₂=CMe-CH₂)Pd(S₂CNMe₂)PMe₂Ph] [(IV); R=Me; X₂CY=S₂CNMe₂]. The high field resonance at τ 7.85 assigned to the methylene protons is a doublet owing to coupling with the ³¹P nucleus of the *cis*-Me₂PhP ligand [$J(P-CH_2)=6$ Hz; doublet separation independent of field strength]. The low field resonances at τ 5.32 are typical for non co-ordinated vinylic protons. Also, unlike the asymmetric complexes of type (III) where phosphorus coupling of ca. 6 and 10 Hz with the low field resonances of protons 1 and 2 is always observed and is diagnostic of a π -bonded asymmetric allyl¹ (*e.g.* Fig. 2a), no spin-spin coupling with the low field allylic resonances greater that 3 Hz is observed for [(CH₂=CMe-CH₂)Pd(S₂CNMe₂)Me₂PhP].

On warming CDCl₃ solutions of $[(\sigma-allyl)Pd(O_2CC_5H_4N)Me_2PhP]$ and $[(\sigma-2-methylallyl)Pd(S_2CNMe_2)Me_2PhP]$ to room temperature the terminal allylic

^{*} cis-³¹P coupling to the methyl protons in trans-[PdIMe(Ph₃P)₂] is 5 Hz¹⁷.

J. Organometal. Chem., 35 (1972)

SCHEME I

proton resonances coalesce to a single resonance consistent with a rapid $\sigma \rightarrow \pi \rightarrow \sigma$ process probably involving π -bonded intermediates similar to (V) and (III). Whilst σ -allylic species have been inferred as intermediates in a variety of dynamic allyl palladium exchange processes¹⁻⁷ this is the first reported example in which the major solution species has been shown to be a σ -allyl complex.

The relative stabilities of π -allylic complexes of type (III) relative to their σ allylic analogues (IV) as indicated by the free energy of activation of 3-4 exchange calculated by the usual coalescence method²¹ are tabulated in Table 2. Previously Van Leeuwen and Praat³ pointed out that partial stabilization of a σ -allylic species [(σ -2-methylallyl)PdOAc(PMe_2Ph)] by a chelating acetate [*i.e.* (IV); X₂CY = O₂CCH₃] may occur but they did not consider that such a process was of prime importance in inducing formation of the σ -allylic intermediate.

From our studies it is clear that the chelating potential of the anionic ligand (X_2CY) is an important factor in stabilizing σ -allylic species such as (IV). The stability of the σ -allylic species (IV) relative to the π -bonded species (III) decreases in the order $X_2CY=S_2CNMe_2$ (σ -2-methylallyl) > $O_2CC_5H_4N$ [σ -allyl, (π -2-methylallyl)] > S_2COMe [π -allyl, (π -2-methylallyl), 3–4 exchange] > O_2CCH_3 (π -allylic ligands, 3–4 exchange) > Cl (π -allylic ligands, no 3–4 exchange) (see Table 2).

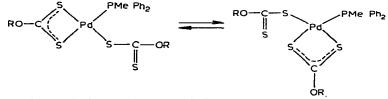

The formation of σ -allylic palladium intermediates may be considered to occur via an $S_N 2$ ligand substitution of the π -allyl-palladium bond. Thus in [(2-methylallyl)-PdCl(Me₂PhP)] in CDCl₃ at 34°, where no suitable ligand is available to effect the formation of a relatively stable, co-ordinatively saturated σ -2-methylallyl intermediate, 3-4 exchange is not observed. However, when chloride bridged species are present [e.g. (π -2-methylallyl)palladium chloride dimer] 3-4 exchange does occur and

TABLE 2

Allylic ligand	(X ₂ CY)	T _c (°C)	$\Delta G_{f_c}^{\ddagger}$ (±0.2 kcals/mole
π -2-Methylallyl	Cl		
π-Allyl	O ₂ CCH ₃	-40	11.0 ⁶
π -2-Methylallyl	O_2CCH_3	- 7	12.9 ⁶
π -2-tert-Butylallyl	O ₂ CCH ₃	+45	14.5 ⁶
π -2-Neopentylallyl	O ₂ CCH ₃	+49	15.86
π -1,1-Dimethylallyl	O ₂ CCH ₃	-33	12.0 ^b
π -2-Methylallyl	S ₂ COMe	< -70	< 10 ^e
π-Allyl	S ₂ COMe	< -80	< 10 ^c
π -2-Methylallyl	O ₂ CC₅H₄N	< -70	< 10 ^e
Allyl	O ₂ CC ₅ H ₄ N	ď	
2-Methylallyl	S ₂ CNMe ₂	e	

FREE ENERGY OF ACTIVATION AND COALESCENCE TEMPERATURE DATA (T_e) FOR 3–4 EXCHANGE IN THE COMPLE	XES
[(All)Pd(X,CY)PMc,Ph] OBTAINED FROM 100 MHz PMR STUDIES OF THESE COMPLEXES IN CDCl3	•

^a 3-4 exchange is not observed. ^b Recorded at 60 MHz. ^c The 3-4 exchange process in these complexes could not be completely "frozen out" owing to solubility problems below -80° . Because of this and related problems we have not as yet been able to ascertain whether or not the non-bonded sulphur and nitrogen atoms are weakly co-ordinated to the palladium atom. In the absence of 3-4 exchange it is possible that two isomers may be observed if such an interaction occurs. Such an interaction is very unlikely in the analogous acetate complex. Previous PMR studies at -40° on palladium xanthate-methyldiphenylphosphine systems (P/Pd=1) have been interpreted in terms of the formation of a five co-ordinate palladium complex¹². However, these results may also be interpreted in terms of the formation of a square planar, four co-ordinate complex in which rapid interchange of chelating xanthate ligand and monodentate xan hate ligand via an S_N^2 type process, similar to that proposed for 3-4 exchange in (III), results in PMR equivalence of the xanthate ligands, *i.e.*:

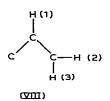
^d Major solution species is a σ -allyl complex (VI). ^e σ -2-methylallyl species (IV).

is thought to involve a co-ordinatively saturated σ -2-methyllyl intermediate of the type (IV) [R=CH₃, L=Me₂PhP; X₂CY="Cl₂Pd(π -2-methylallyl)"]. When the anionic ligand X₂CY is potentially a very good chelating ligand addition of Me₂PhP results in preferential substitution of the π -allylic ligand to give a stable σ -allylic complex.

The nature and position of the allylic ligand substituents also has a marked effect on the relative stabilities of the π - and σ -allylic species. From this and previous work^{6,18-20} it can be concluded that the relative stability of the σ -allylic species decreases in the order 2-chloroallyl¹⁸⁻²⁰ > allyl > 2-methylallyl > 2-tert-butylallyl > 2-neopentylallyl. Furthermore, a 2-alkyl substituent, as might be anticipated from a consideration of inductive effects, stabilizes π -allylic cationic species. Steric interactions between terminal π -allylic substituents and a large bulky *cis* ligand¹⁵ would be anticipated.

pated to decrease the relative stability of the π -allylic ligand. It seems probable that both electronic and steric factors are important in determining the relative stability of the 2-substituted σ -allylic species: electron withdrawing groups enhancing the stability and large bulky groups, which would be involved in steric repulsions with *cis* ligands in (IV), decreasing the stability of the σ -allylic species relative to the π bonded analogue.

The low temperature PMR spectra of $[(\pi-2-\text{methylallyl})Pd(\text{Acac})]$ and $[(\pi-2-\text{methylallyl})Pd(\text{oxinate})]$ in the presence of one Me₂PhP per Pd atom indicated the presence of several species in solution but were too broad and complex to satisfactorily interpret.


Attempts to further verify the formation of the σ -allylic complexes (VI) and (IV) (R=CH₃;X₂CY=S₂CNMe₂) from laser Raman and solution IR studies have so far proved unsuccessful owing to decomposition in the laser beam; the complexity of the infrared spectrum of (IV) in the region of C=C stretching frequencies; and fairly rapid disproportionation reactions. In particular, in the N,N-dimethyldithiocarbamate system [Pd(S₂CNMe₂)₂] commences to precipitate from room temperature CHCl₃ solutions after several minutes. The low temperature PMR studies of this system were carried out by adding Me₂PhP to a sample of [(π -2-methylallyl)Pd-(S₂CNMe₂)] already situated in the probe and recording the spectrum immediately.

EXPERIMENTAL

Melting points were determined on a Kofler Hot Stage Apparatus and are corrected. Molecular weight determinations were carried out using a Mechrolab 301A Osmometer. PMR spectra were recorded on Varian HA-100 and A56/60D Spectrometers.

 π -Allylic palladium acetates, acetylacetonates, oxinates, and picolinates were prepared by previously reported methods^{13,14}. New π -allylic palladium(II) complexes and their analytical and PMR data in CDCl₃ are recorded below. Allylic protons are numbered as shown in (VIII). J-values (±0.5) measured in Hz.

All studies involving dimethylphenylphosphine were carried out under an atmosphere of nitrogen. PMR samples containing Me_2PhP were stored at -78° when not in the probe.

(2-Methylallyl)(methylxanthato)palladium(II)

A solution of potassium methylxanthate (0.383 g) in methanol (10 ml) was added to a solution of di- μ -chlorobis(2-methylallyl)dipalladium(II) (0.516 g) in chloroform (3 ml). The solution was filtered and the orange filtrate evaporated to dryness under reduced pressure to give the required product as orange microprisms (0.48 g; 69%), m.p. 75–80°. (Found : C, 27.09; H, 3.72; mol. wt. osmometrically in 1.0% w/v chloro-

form solution, 251. $C_6H_{10}OPdS_2$ calcd.: C, 26.82; H, 3.75% mol.wt. 269.) $\tau_2 = 5.88$; $\tau_3 = 7.16$; τ (2-methyl) = 7.99; τ (OMe) = 5.74. Also prepared in this manner were :

(2-Methylallyl)(ethylxanthato)palladium(II). Yield 90%. Orange prisms, m.p. 49–52°. (Found: C, 29.68; H, 4.08, C₇H₁₂OPdS₂ calcd.: C, 29.74; H, 4.28%.) $\tau_2 = 5.97$; $\tau_3 = 7.20$; τ (2-methyl)=8.00; τ (OEt)=5.32 (CH₂-quartet), 8.51 (CH₃-triplet).

Allyl(methylxanthato)palladium(II). Yield 78%. Orange-brown amorphous solid m.p. 40–44°. (Found: C, 21.04; H, 2.74. C₅H₈OPdS₂ calcd.: C, 23.58; H, 3.16%.) $\tau_1 = 4.67$; $\tau_2 = 5.65$; $\tau_3 = 7.01$; $J_{1,2} = 6$; $J_{1,3} = 12$; τ (OMe)=5.73.

(2-Methylallyl)(dimethyldithiocarbamato)palladium(II).

A 50% aqueous solution of potassium dimethyldithiocarbamate (0.7 ml) was added to a solution of di- μ -chlorobis(2-methylallyl)dipalladium(II) (0.431 g) in a 1/1 mixture of chloroform and methanol (71 ml). The solution was filtered and the yellow filtrate evaporated to dryness under reduced pressure. The solid residue recrystallized from chloroform/light petroleum (b.p. 30–60°) as yellow prisms (0.366 g, 58%), m.p. 133–134° with decompn. (Found : C, 29.97; H, 4.74. C₇H₁₃NPdS₂ calcd.: C, 29.84; H, 4.65%) τ_2 =6.04; τ_3 =7.28; τ (2-methyl)=7.99; τ (NMe₂)=6.53.

Attempts to isolate the Me_2PhP -complex 1/1 adducts gave oily products which were not further characterized.

ACKNOWLEDGEMENT

We thank the National Research Council of Canada and the Province of Ontario for financial support of this investigation.

REFERENCES

- 1 J. POWELL AND B. L. SHAW, J. Chem. Soc. A, (1967) 1839.
- 2 (a) K. VRIEZE, C. MACLEAN, P. COSSEE AND C. W. HILBERS, Recl. Trav. Chim. Pays-Bas, 85 (1966) 1077.
 (b) K. VRIEZE, P. COSSEE, A. P. PRAAT AND C. W. HILBERS. J. Organometal. Chem., 11 (1968) 353.
 (c) K. VRIEZE, A. P. PRAAT AND P. COSSEE, J. Organometal. Chem., 12 (1968) 533.
- 3 P. W. N. M. VAN LEEUWEN AND A. P. PRAAT, Chem. Commun., (1970) 365.
- 4 D. L. TIBBETS AND T. L. BROWN, J. Amer. Chem. Soc., 92 (1970) 303.
- 5 P. W. N. M. VAN LEEUWEN AND A. P. PRAAT, J. Organometal. Chem., 21 (1970) 501.
- 6 J. POWELL, J. Chem. Soc. A, (1971) 2233.
- 7 J. W. FALLER, M. E. THOMSEN AND M. J. MATTINA, J. Amer. Chem. Soc., 93 (1971) 2642.
- 8 Y. TAKAHASHI, S. SAKAI AND Y. ISHII, J. Organometal. Chem., 16 (1969) 177.
- 9 R. P. HUGHES AND J. POWELL, Chem. Commun., (1971) 275.
- 10 R. P. HUGHES AND J. POWELL, J. Organometal. Chem., 30 (1971) C45.
- 11 J. M. JENKINS AND B. L. SHAW, J. Chem. Soc. A, (1966) 770.
- 12 J. P. FACKLER, JR., W. C. SIEDEL AND J. A. FETCHIN, J. Amer. Chem. Soc., 90 (1968) 2707.
- 13 E. BAN, A. CHAN AND J. POWELL, J. Organometal. Chem., 34 (1972) 405.
- 14 S. D. ROBINSON AND B. L. SHAW, J. Organometal. Chem., 3 (1965) 367.
- 15 J. POWELL AND B. L. SHAW, J. Chem. Soc. A, (1968) 774.
- 16 R. MASON AND D. R. RUSSELL, Chem. Commun., (1966) 26.
- 17 P. FITTON, M. P. JOHNSON AND J. E. MCKEON, Chem. Commun., (1968) 6.
- 18 J. C. W. CHIEN AND H. C. DEHM, Chem. Ind. (London), (1961) 745.
- 19 J. POWELL, S. D. ROBINSON AND B. L. SHAW, Chem. Commun., (1965) 78.
- 20 R. P. HUGHES AND J. POWELL, unpublished results.
- 21 J. A. POPLE, W. G. SCHNEIDER AND H. J. BERNSTEIN, High Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York, 1959, p.224.